The LASIK industry & the FDA have conspired since LASIK's inception to purposely withhold information vital to the public in making a truly informed LASIK decision. With, The hope is to show you what the industry and FDA would not and did not even think of doing until LASIK casualties started speaking out, and yet, they still did NOTHING.
Biomechanical modeling of refractive corneal surgery PDF Print E-mail
Wednesday, 22 March 2006 07:34

J Biomech Eng. 2006 Feb;128(1):150-60.   

Alastrue V, Calvo B, Pena E, Doblare M.  Group of Structural Mechanics and Material Modelling, Aragon Institute of Engineering Research (13A), University of Zaragoza, Spain 

The aim of refractive corneal surgery is to modify the curvature of the cornea to improve its dioptric properties. With that goal, the surgeon has to define the appropriate values of the surgical parameters in order to get the best clinical results, i.e., laser and geometric parameters such as depth and location of the incision, for each specific patient. A biomechanical study before surgery is therefore very convenient to assess quantitatively the effect of each parameter on the optical outcome. A mechanical model of the human cornea is here proposed and implemented under a finite element context to simulate the effects of some usual surgical procedures, such as photorefractive keratectomy (PRK), and limbal relaxing incisions (LRI). This model considers a nonlinear anisotropic hyperelastic behavior of the cornea that strongly depends on the physiological collagen fibril distribution. We evaluate the effect of the incision variables on the change of curvature of the cornea to correct myopia and astigmatism. The obtained results provided reasonable and useful information in the procedures analyzed. We can conclude from those results that this model reasonably approximates the corneal response to increasing pressure. We also show that tonometry measures of the IOP underpredicts its actual value after PRK or LASIK surgery.